Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study.
نویسندگان
چکیده
Quantitative, non-invasive and local measurements of arterial mechanical properties could be highly beneficial for early diagnosis of cardiovascular disease and follow up of treatment. Arterial shear wave elastography (SWE) and wave velocity dispersion analysis have previously been applied to measure arterial stiffness. Arterial wall thickness (h) and inner diameter (D) vary with age and pathology and may influence the shear wave propagation. Nevertheless, the effect of arterial geometry in SWE has not yet been systematically investigated. In this study the influence of geometry on the estimated mechanical properties of plates (h = 0.5-3 mm) and hollow cylinders (h = 1, 2 and 3 mm, D = 6 mm) was assessed by experiments in phantoms and by finite element method simulations. In addition, simulations in hollow cylinders with wall thickness difficult to achieve in phantoms were performed (h = 0.5-1.3 mm, D = 5-8 mm). The phase velocity curves obtained from experiments and simulations were compared in the frequency range 200-1000 Hz and showed good agreement (R 2 = 0.80 ± 0.07 for plates and R 2 = 0.82 ± 0.04 for hollow cylinders). Wall thickness had a larger effect than diameter on the dispersion curves, which did not have major effects above 400 Hz. An underestimation of 0.1-0.2 mm in wall thickness introduces an error 4-9 kPa in hollow cylinders with shear modulus of 21-26 kPa. Therefore, wall thickness should correctly be measured in arterial SWE applications for accurate mechanical properties estimation.
منابع مشابه
Studying the influence of Geometric Characteristics and Arrangement of FRP Layers on Rehabilitation of Concrete Shear Walls
During recent years, the use of fiber-reinforced polymers (FRP) as a desirable alternative for improving the behavior of lateral resisting system are known. There are various factors influencing the quality of such kind of rehabilitation. This study aims to investigate the influence of geometric characteristics and arrangement of FRP layers on rehabilitating of concrete shear walls. A few rein...
متن کاملBias of shear wave elasticity measurements in thin layer samples and a simple correction strategy
Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method ...
متن کاملInvestigation of Shape Functions Role on the Mesh-free Method Application in Soft Tissue Elastography
In current study, The Mesh-free method based on weak-form formulation coupled with the ultrasound imaging technique is developed. This problem consists in computing the deformation of an elastic non-homogenous phantom by numerical methods (both Mesh-free and Finite Element) and converge their results to the measured deformation by the ultrasound. The shape functions of Mesh-free are approximate...
متن کاملViscoelastic Modeling of Brain MRE Data Using FE Method
Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this stud...
متن کاملFinite element formulation for shear modulus reconstruction in transient elastography
In order to image the shear modulus in soft tissue, for medical diagnosis, given one component of measured displacements as a function of time on an imaging plane, two related direct finite element-based inversion algorithms are presented. One algorithm is based on the governing equations expressed in the frequency domain, and the other is in the time domain. The algorithms consider the complet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 62 7 شماره
صفحات -
تاریخ انتشار 2017